Reference

[1]

Leon Bottou. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. URL: https://doi.org/10.1007/978-3-642-35289-8_25, doi:10.1007/978-3-642-35289-8_25.

[2]

Wai-Ki Ching, Delin Chu, Li-Zhi Liao, and Xiaoyan Wang. Regularized orthogonal linear discriminant analysis. Pattern Recognition, 45(7):2719–2732, 2012. URL: https://www.sciencedirect.com/science/article/pii/S0031320312000283, doi:https://doi.org/10.1016/j.patcog.2012.01.007.

[3]

Ross Girshick. Fast r-cnn. 2015. URL: https://arxiv.org/abs/1504.08083, doi:10.48550/ARXIV.1504.08083.

[4]

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. 2013. URL: https://arxiv.org/abs/1311.2524, doi:10.48550/ARXIV.1311.2524.

[5]

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA, USA, 2016. URL: http://www.deeplearningbook.org.

[6]

Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY, USA, 2009.

[7]

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning: with Applications in R. Springer, New York, NY, USA, 2013. URL: https://www.statlearning.com.

[8]

Beijing Academy of Artificial Intelligence. Suggested notation for machine learning. 2020. URL: https://github.com/mazhengcn/suggested-notation-for-machine-learning.

[9]

K. B. Petersen and M. S. Pedersen. The matrix cookbook. nov 2012. Version 20121115. URL: http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html.

[10]

H. Pishro-Nik. Introduction to Probability, Statistics, and Random Processes. Kappa Research LLC, 2014. URL: https://www.probabilitycourse.com.

[11]

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. CoRR, 2016. URL: http://arxiv.org/abs/1612.08242, arXiv:1612.08242.

[12]

Joseph Redmon and Ali Farhadi. Yolov3: an incremental improvement. 2018. URL: https://arxiv.org/abs/1804.02767, doi:10.48550/ARXIV.1804.02767.

[13]

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time object detection with region proposal networks. 2015. URL: https://arxiv.org/abs/1506.01497, doi:10.48550/ARXIV.1506.01497.

[14]

Andrew Rothman. Ols regression, gauss-markov, blue, and understanding the math. Jun 2020. [Online; accessed 21-February-2023]. URL: https://towardsdatascience.com/ ols-linear-regression-gauss-markov-blue-and-understanding-the- math-453d7cc630a5.

[15]

Wikipedia. Definite Matrix. 2023. [Online; accessed 9-May-2023]. URL: https://en.wikipedia.org/wiki/Definite_matrix.

[16]

Wikipedia. Gauss–Markov Theorem. 2023. [Online; accessed 21-February-2023]. URL: https://en.wikipedia.org/wiki/Gauss–Markov_theorem.

[17]

Wikipedia. Gram Matrix. 2023. [Online; accessed 9-May-2023]. URL: https://en.wikipedia.org/wiki/Gram_matrix.

[18]

Wikipedia. Moore–Penrose Inverse. 2023. [Online; accessed 9-May-2023]. URL: https://en.wikipedia.org/wiki/Moore-Penrose_inverse.

[19]

Wikipedia. Pooled Variance. 2023. [Online; accessed 7-May-2023]. URL: https://en.wikipedia.org/wiki/Pooled_variance.

[20]

Wikipedia. Ridge Regression. 2023. [Online; accessed 9-May-2023]. URL: https://en.wikipedia.org/wiki/Ridge_regression.

[21]

Wikipedia. Simple Linear Regression. 2023. [Online; accessed 17-March-2023]. URL: https://en.wikipedia.org/wiki/Simple_linear_regression.

Back to Machine Learning Study Notes: A Learner’s Perspective.