|||

ML Notes

Quick search

Contents:

  • Mathematics
    • Fourier Transform
    • Statistical Learning
  • NLP
  • Computer Vision
  • Micro-nanoplastics
  • Reference

Mathematics¶

Contents:

  • Fourier Transform
    • Important Examples
    • Duality
    • Operations
    • Convolution: Introduction
    • Convolution: Cooling of a Rod
    • Convolution: Central Limit Theorem
    • Generalized Fourier Transform: Schwartz Space
    • Generalized Fourier Transform: Tempered Distribution
    • Generalized Fourier Transform: Delta Distribution
    • Application One: Diffraction
    • Reference
  • Statistical Learning
    • Mean Squared Error Decomposition
    • Bayes Theorem
    • Bayes Example: Biased Coin
    • Bayes Example: Classification
    • Multivariate Gaussian Distribution
    • LDA: Classification
    • LDA: Dimensionality Reduction
    • Quadratic Discriminant Analysis
    • Linear Regression: Ordinary Least Squares
    • Linear Regression: Formula Derivation
    • Gradient in Backpropagation
    • Gradient Descent
    • Policy Gradient
    • Appendix A: Setup R Environment
    • Appendix B: Setup Jupyter Lab Environment

Back to Machine Learning Notes: A Learner’s Perspective.

<Machine Learning Notes: A Learner’s Perspective
Fourier Transform>
© Copyright 2022, Juan Cervantes. Created using Sphinx 8.2.3.

Styled using the Piccolo Theme