Size-Based Prediction of MnP Abundance
Across water, soil, sediment, sludge, and air, there is a strong inverse power-law relationship:
\[
n(x) \propto x^{-\alpha}
\]
Where:
\(x\) is the characteristic size of the particles (e.g., geometric mean of the bin).
 
\(n(x)\) is the number of MP particles of size \(x\) (in \(\mu m\))
 
the exponent \(\alpha\) is a positive constant typically between 1 and 2
 
The raw power-law distribution is:
\[
n(x) = b \cdot x^{-\alpha}
\]
Taking logarithms of both sides yields a linear form:
\[
\log(n) = -\alpha \log(x) + \log(b)
\]
Based on this study, particles are only observed in a limited size range.
Therefore, both \(x\) and \(n(x)\) should be normalized to the bin width:
\[
\hat n = \frac{n}{x_{UB} - x_{LB}}
\]
\[
\hat x = \sqrt{x_{UB} \cdot x_{LB}}
\]
Where:
\(n\): number of particles in the bin
 
\(x_{UB}, x_{LB}\): upper and lower size limits of the bin,
 
\(\hat n\): density of particles in a specific size range
 
\(\hat x\): geometric mean of the bin size
 
After these corrections, the relationship becomes:
\[
\log (\hat n) = -\alpha \log (\hat x) + \log (b)
\tag{1}
\]
Exponentiating both sides:
\[
\hat n = b \cdot \hat x^{-\alpha}
\]
Or equivalently:
\[
n =
  b \cdot (x_{UB} - x_{LB}) \cdot
  \left( \sqrt{x_{UB} \cdot x_{LB}} \right)^{-\alpha}
\tag{2}
\]
Suppose the number of particles \(\hat n_{\text{ref}}\) in a reference bin \([x_{LB.\text{ref}}, x_{UB.\text{ref}}]\) is known, to predict the number of particles \(\hat n_{\text{pred}}\) in another bin \([x_{LB.\text{pred}}, x_{UB.\text{pred}}]\) with the same constants \(\alpha\) and \(b\), apply Equation (2) to both bins
\[
n_{\text{pred}} =
  b \cdot (x_{UB.\text{pred}} - x_{LB.\text{pred}}) \cdot
  \left( \sqrt{x_{UB.\text{pred}} \cdot x_{LB.\text{pred}}} \right)^{-\alpha}
\]
\[
n_{\text{ref}} =
  b \cdot (x_{UB.\text{ref}} - x_{LB.\text{ref}}) \cdot
  \left( \sqrt{x_{UB.\text{ref}} \cdot x_{LB.\text{ref}}} \right)^{-\alpha}
\]
Take the ratio:
\[
\frac{n_{\text{pred}}}{n_{\text{ref}}} =
  \frac{(x_{UB.\text{pred}} - x_{LB.\text{pred}}) \cdot
    \left(
      \sqrt{x_{UB.\text{pred}} \cdot x_{LB.\text{pred}}}
    \right)^{-\alpha}
  }
  {(x_{UB.\text{ref}} - x_{LB.\text{ref}}) \cdot
    \left(
      \sqrt{x_{UB.\text{ref}} \cdot x_{LB.\text{ref}}}
    \right)^{-\alpha}
  }
\]
\[
\therefore
n_{\text{pred}} =
n_{\text{ref}} \cdot
\left(
\frac{x_{UB.\text{pred}} - x_{LB.\text{pred}}}{x_{UB.\text{ref}} - x_{LB.\text{ref}}}
\right)
\cdot
\left(
\frac{x_{UB.\text{pred}} \cdot x_{LB.\text{pred}}}{x_{UB.\text{ref}} \cdot x_{LB.\text{ref}}}
\right)^{- \alpha / 2}
\]
Back to Micro-nanoplastics.