Bayes Example: ClassificationΒΆ

Consider a binary classification problem \(\theta \in \{0, 1\}\):

\[\begin{split}\theta = \begin{cases} 0, & \text{Tail} \\ 1, & \text{Head} \end{cases}\end{split}\]

The prior probability of \(\theta\):

\[\begin{split}p_{\Theta}(\theta) = \begin{cases} 0.69, & \theta = 0 \\ 0.31, & \theta = 1 \end{cases}\end{split}\]
\[\therefore \pi (\theta) = 0.69 \cdot \delta_0 (x) + 0.31 \cdot \delta_1 (x)\]

The probability density function of predictor random variable \(X\), given the condition of \(\theta\), is also known:

\[f_X(x \mid \theta = 0) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}\]
\[f_X(x \mid \theta = 1) = \frac{1}{\sqrt{\pi}} e^{- (x - 1)^2}\]
\[\begin{split}\therefore \mathcal{L} (\theta \mid x) &= f_X (x \mid \theta) \\ &= \begin{cases} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}, & \theta = 0 \\ \frac{1}{\sqrt{\pi}} e^{- (x - 1)^2}, & \theta = 1 \\ 0, & \text{otherwise} \end{cases}\end{split}\]
\[\begin{split}\therefore f (\theta \mid x) &= \frac {\mathcal{L}(\theta \mid \mathbf{x}) \cdot \pi (\theta)} {\int\limits_{\mathbb{R}} \mathcal{L} (\theta \mid \mathbf{x}) \cdot \pi (\theta) \mathrm{d} \theta} \\ &= \frac {\mathcal{L}(\theta \mid \mathbf{x}) \cdot \pi (\theta)} {0.69 \cdot f_X(x \mid \theta = 0) + 0.31 \cdot f_X(x \mid \theta = 1)}\end{split}\]

Back to Statistical Learning.