|||

ML Notes

Quick search

Contents:

  • Mathematics
    • Fourier Transform
    • Statistical Learning
      • Mean Squared Error Decomposition
      • Bayes Theorem
      • Bayes Example: Biased Coin
      • Bayes Example: Classification
      • Multivariate Gaussian Distribution
      • LDA: Classification
      • LDA: Dimensionality Reduction
      • Quadratic Discriminant Analysis
      • Linear Regression: Ordinary Least Squares
      • Linear Regression: Formula Derivation
      • Gradient in Backpropagation
      • Gradient Descent
      • Policy Gradient
      • Appendix A: Setup R Environment
      • Appendix B: Setup Jupyter Lab Environment
  • NLP
  • Computer Vision
  • Micro-nanoplastics
  • Reference

Statistical LearningΒΆ

Contents:

  • Mean Squared Error Decomposition
    • TL;DR
    • Derivation
    • Comments
  • Bayes Theorem
    • Joint, Marginal and Conditional Distributions
    • Likelihood
    • Bayes Theorem
  • Bayes Example: Biased Coin
    • Maximum Likelihood Estimate
    • Bayes Estimate
  • Bayes Example: Classification
  • Multivariate Gaussian Distribution
    • Parameter Estimation
    • Properties of the Covariance Matrix
  • LDA: Classification
    • Probability Density Function
    • Decision Boundary
  • LDA: Dimensionality Reduction
    • Within / Between Class Variance
    • Optimal Projection
    • Lagrangian Function
  • Quadratic Discriminant Analysis
    • Probability Density Function
    • Classification
  • Linear Regression: Ordinary Least Squares
    • TL;DR
    • Problem and Hypothesis
    • Assumptions of the OLS
  • Linear Regression: Formula Derivation
    • Originally Derived Formula
    • Factored Form
    • Slope Weighted Average Form
    • Correlation Coefficient Form
    • Expectation and Variance
  • Gradient in Backpropagation
    • TL;DR
    • Fully Connected Layer
    • Gradient
  • Gradient Descent
    • Empirical Risk Minimization
    • Stochastic vs. Batch
  • Policy Gradient
    • Trust Region Policy Optimization (TRPO)
    • Proximal Policy Optimization (PPO)
  • Appendix A: Setup R Environment
    • Download and Install R
    • RStudio IDE
    • Reference
  • Appendix B: Setup Jupyter Lab Environment
    • Prerequisites
    • Install Jupyter Lab and Kernels
    • Known Issues

Back to Mathematics.

<Application One: Diffraction
Mean Squared Error Decomposition>
© Copyright 2022, Juan Cervantes. Created using Sphinx 8.2.3.

Styled using the Piccolo Theme