|||

ML Notes

Quick search

Contents:

  • Mathematics
    • Fourier Transform
      • Important Examples
      • Duality
      • Operations
      • Convolution: Introduction
      • Convolution: Cooling of a Rod
      • Convolution: Central Limit Theorem
      • Generalized Fourier Transform: Schwartz Space
      • Generalized Fourier Transform: Tempered Distribution
      • Generalized Fourier Transform: Delta Distribution
      • Application One: Diffraction
    • Statistical Learning
  • NLP
  • Computer Vision
  • Micro-nanoplastics
  • Reference

Fourier Transform¶

Contents:

  • Important Examples
    • General Tips
    • Rectangular Function
    • Triangle Function
    • Gaussian function
  • Duality
    • Exploration
    • Formulas
    • Application
  • Operations
    • Linear Combination
    • Shift
    • Stretch
    • Differentiation
    • Convolution
  • Convolution: Introduction
    • Interpreted by Filtering
    • Differentiability
  • Convolution: Cooling of a Rod
    • Problem
    • Solution
  • Convolution: Central Limit Theorem
    • Gaussian Curve
    • Sum of Random Variables
    • Central Limit Theorem
  • Generalized Fourier Transform: Schwartz Space
    • Lemma
    • Differentiation Formulas
    • Closure under Fourier Transform
    • Parseval’s Theorem of Fourier Transform
  • Generalized Fourier Transform: Tempered Distribution
    • Delta Distribution
    • Function Induced Distribution
    • Fourier Transform of Distribution
    • Derivitive of Distribution
    • Multiplication of Distribution
    • Convolution of Distribution
  • Generalized Fourier Transform: Delta Distribution
    • Sampling Property of Delta
    • Convolution Property of Delta
    • Scaling Property of Delta
  • Application One: Diffraction
    • Problem Introduction
    • Solutioin

Reference¶

  1. The Fourier Transform and its Applications

  2. Tempered Distributions


Back to Mathematics.

<Page contents

>Page contents:

  • Fourier Transform
    • Reference
<Mathematics
Important Examples>
© Copyright 2022, Juan Cervantes. Created using Sphinx 8.2.3.

Styled using the Piccolo Theme