Convolution: Cooling of a Rod

Problem

Suppose the temperature of a homogeneous rod is determined by function:

\[u(x, t)\]

where \(x\) denotes the position \(t\) denote the time.

The initial temperature distribution \(u(x, 0)\) is denoted by function \(f(x)\). Find the temperature function \(u\).

Solution

According to the cooling formula:

\[\frac{\partial u}{\partial t} = C \cdot \frac{\partial^2 u}{\partial x^2}\]

Applying Fourier transform for spacial variable \(x\) on both sides:

\[\begin{split}\mathcal{F} (\frac{\partial u}{\partial t}) (s) & = \int_{-\infty}^{\infty} e^{-2 \pi i s x} \frac{\partial}{\partial t} u(x, t) dx \\ & = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} e^{-2 \pi i s x} u(x, t) dx \\ & = \frac{\partial}{\partial t} U(s, t)\end{split}\]

where \(U(s, t) = \mathcal{F} u (s, t)\)

\[ \begin{align}\begin{aligned}\begin{split}\mathcal{F} (C \cdot \frac{\partial^2 u}{\partial x^2}) (s) & = C \cdot \int_{-\infty}^{\infty} e^{-2 \pi i s x} \frac{\partial^2}{\partial x^2} u(x, t) dx \\ & = C \cdot (2 \pi i s)^2 \int_{-\infty}^{\infty} e^{-2 \pi i s x} u(x, t) dx \\ & = -4 C \pi^2 s^2 U(s, t)\end{split}\\\begin{split}\\\end{split}\end{aligned}\end{align} \]

Therefore we have a differential equation:

\[\frac{\partial}{\partial t} U(s, t) = -4 C \pi^2 s^2 U(s, t)\]

whose solution:

\[U(s, t) = F(s) \cdot G(s, t)\]

where \(F(s) = \mathcal{F} f(x)\) and \(G(s, t) = e^{-4 C \pi^2 s^2 t}\).

Notice that \(G(s, t)\) is a Gaussian function of variable \(s\), which can well be denoted as a Fourier transform of another Gaussian function \(g(x, t)\) of variable \(x\).

Suppose:

\[ \begin{align}\begin{aligned}g(x, t) = A(t) e^{(- \pi (a(t) \cdot x)^2)} = A(t) e^{- \pi a^2 (t) x^2}\\\begin{split}\\\end{split}\\\begin{split}\therefore G(s, t) & = (\mathcal{F} g) (s, t) \\ & = (\mathcal{F} (A(t) e^{- \pi a^2 (t) x^2})) (s) \\ & = A(t) \cdot \frac{1}{|a(t)|} e^{- \pi \frac{s^2}{a^2(t)}} \\ & = e^{-4 C \pi^2 s^2 t}\end{split}\end{aligned}\end{align} \]

By solving the system of equations:

\[\begin{split}\begin{cases} -4 C \pi^2 t = \frac{\pi}{a^2 (t)} \\ A(t) = |a(t)| \end{cases}\end{split}\]

we have:

\[ \begin{align}\begin{aligned}A(t) = a(t) = \frac{1}{2 \sqrt{C \pi t}}\\\begin{split}\\\end{split}\\\therefore g(x, t) = \frac{1}{2 \sqrt{C \pi t}} e^{- \frac{x^2}{4 C t}}\\\begin{split}\\\end{split}\\\begin{split}\therefore U(s, t) & = F(s) \cdot G(s, t) \\ & = \mathcal{F} f (s) \cdot \mathcal{F} g (s, t) \\ & = \mathcal{F} (f (x) * g(x, t))\end{split}\\\begin{split}\\\end{split}\\\begin{split}\therefore u(x, t) & = f(x) * g(x, t) \\ & = f(x) * \frac{1}{2 \sqrt{C \pi t}} e^{- \frac{x^2}{4 C t}}\end{split}\end{aligned}\end{align} \]

Back to Fourier Transform.