Duality

Exploration

By exploring the similarity in the formulas for the Fourier transform and its inverse:

\[ \begin{align}\begin{aligned}\mathcal{F} f(s) = \int_{-\infty}^{+\infty} e^{-2 \pi i s t} f(t) dt\\\mathcal{F}^{-1} f(t) = \int_{-\infty}^{+\infty} e^{2 \pi i s t} f(s) ds\\\begin{split}\\\end{split}\\\text{Let } f^- (x) = f(-x)\\\begin{split}\\\end{split}\\\begin{split}\therefore (\mathcal{F} f)^- (x) & = \int_{-\infty}^{+\infty} e^{-2 \pi i \cdot (-x) \cdot t} f(t) dt \\ & = \int_{-\infty}^{+\infty} e^{2 \pi i x t} f(t) dt \\ & = \mathcal{F}^{-1} f(x)\end{split}\\\begin{split}\\\end{split}\\\mathcal{F} f^- (x) = \int_{-\infty}^{+\infty} e^{-2 \pi i s t} f(-t) dt\\\begin{split}\\\end{split}\\\text{Let } u = -t \implies t = -u\\\begin{split}\\\end{split}\\\begin{split}\therefore \mathcal{F} f^- (x) & = \int_{+\infty}^{-\infty} e^{-2 \pi i s \cdot (-u)} f(u) d(-u) \\ & = \int_{-\infty}^{+\infty} e^{2 \pi i s u} f(u) du \\ & = \mathcal{F}^{-1} f (x)\end{split}\end{aligned}\end{align} \]

Formulas

\[ \begin{align}\begin{aligned}(\mathcal{F} f)^- = \mathcal{F}^{-1} f\\\mathcal{F} f^- = \mathcal{F}^{-1} f\\\therefore (\mathcal{F} f)^- = \mathcal{F} f^-\\\begin{split}\\\end{split}\\\text{Let } g^- = f \iff g = f^-\\\begin{split}\\\end{split}\\\begin{split}\therefore \mathcal{F} \mathcal{F} f & = \mathcal{F} \mathcal{F} g^- \\ & = \mathcal{F} \mathcal{F}^{-1} g \\ & = g \\ & = f^-\end{split}\end{aligned}\end{align} \]

Application

\[ \begin{align}\begin{aligned}\DeclareMathOperator{\sinc}{sinc}\\\mathcal{F} \sinc = \pi\end{aligned}\end{align} \]

Proof

\[ \begin{align}\begin{aligned}\because \mathcal{F} \pi (x) = \sinc (x)\\\begin{split}\\\end{split}\\\begin{split}\therefore \mathcal{F} \sinc & = \mathcal{F} \mathcal{F} \pi \\ & = \pi^- \\ & = \pi\end{split}\end{aligned}\end{align} \]
\[\tag*{$\blacksquare$}\]

Back to Fourier Transform.