Generalized Fourier Transform: Delta Distribution

Sampling Property of Delta

Mathematical meaning of taking samples is multiplying by \(\delta\).

\[f \delta_a = f(a) \delta_a\]

Proof:

\[\begin{split}\langle f \delta_a, \phi \rangle & = \langle \delta_a, f \phi \rangle \\ & = (f \phi) (a) \\ & = f(a) \phi (a) \\ & = \langle f(a) \delta_a, \phi \rangle\end{split}\]
\[\therefore f \delta_a = f(a) \delta_a\]
\[\tag*{$\blacksquare$}\]

Convolution Property of Delta

\[f * \delta_a = f(x - a)\]

Proof:

\[\begin{split}\langle f * \delta_a, \phi \rangle & = \langle f, \phi * \delta_a^- \rangle \\ & = \langle f, \phi * \delta_{-a} \rangle \\ & = \langle f(x), \int_{-\infty}^{+\infty} \delta_{-a} (x - y) \phi (y) dy \rangle \\ & = \langle f(x), \int_{-\infty}^{+\infty} \delta_{-a} (u) \phi (x - u) du \rangle \\ & = \langle f(x), \langle \delta_{-a} (u), \phi(x - u) \rangle \rangle \\ & = \langle f(x), \phi(x + a) \rangle \\ & = \int_{-\infty}^{+\infty} f(x) \phi(x + a) dx \\ & = \int_{-\infty}^{+\infty} f(u - a) \phi(u) du \\ & = \langle f(x - a), \phi(x) \rangle\end{split}\]
\[\therefore f * \delta_a = f(x - a)\]
\[\tag*{$\blacksquare$}\]

Specifically:

\[\begin{split}f * \delta & = f \\ \delta * \delta & = \delta \\ \delta_a * \delta_b & = \delta_{a+b}\end{split}\]

Scaling Property of Delta

\[\delta (ax) = \frac{1}{|a|} \delta\]

Proof:

Suppose \(a > 0\):

\[\begin{split}\langle \delta (ax), \phi(x) \rangle & = \int_{-\infty}^{+\infty} \delta (ax) \phi(x) dx \\ & = \frac{1}{a} \int_{-\infty}^{+\infty} \delta (u) \phi(\frac{u}{a}) du \\ & = \frac{1}{a} \phi(0) \\ & = \langle \frac{1}{a} \delta (x), \phi (x) \rangle\end{split}\]
\[\therefore a \gt 0 \implies \delta (ax) = \frac{1}{a} \delta\]

Similarly:

\[ \begin{align}\begin{aligned}a \lt 0 \implies \delta (ax) = -\frac{1}{a} \delta\\\begin{split}\\\end{split}\\\therefore \delta (ax) = \frac{1}{|a|} \delta\end{aligned}\end{align} \]
\[\tag*{$\blacksquare$}\]

Back to Fourier Transform.